Content Preview

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Odit molestiae mollitia laudantium assumenda nam eaque, excepturi, soluta, perspiciatis cupiditate sapiente, adipisci quaerat odio voluptates consectetur nulla eveniet iure vitae quibusdam? Excepturi aliquam in iure, repellat, fugiat illum voluptate repellendus blanditiis veritatis ducimus ad ipsa quisquam, commodi vel necessitatibus, harum quos a dignissimos.

Close Save changes

Keyboard Shortcuts

Help F1 or ? Previous Page ← + CTRL (Windows) ← + ⌘ (Mac) Next Page → + CTRL (Windows) → + ⌘ (Mac) Search Site CTRL + SHIFT + F (Windows) ⌘ + ⇧ + F (Mac) Close Message ESC

14.6 - Uniform Distributions

A continuous random variable \(X\) has a uniform distribution, denoted \(U(a,b)\), if its probability density function is:

Note that the length of the base of the rectangle is \((b-a)\), while the length of the height of the rectangle is \(\dfrac\). Therefore, as should be expected, the area under \(f(x)\) and between the endpoints \(a\) and \(b\) is 1. Additionally, \(f(x)>0\) over the support \(a

Because there are an infinite number of possible constants \(a\) and \(b\), there are an infinite number of possible uniform distributions. That's why this page is called Uniform Distributions (with an s!) and not Uniform Distribution (with no s!). That said, the continuous uniform distribution most commonly used is the one in which \(a=0\) and \(b=1\).

Cumulative distribution Function of a Uniform Random Variable \(X\)

The cumulative distribution function of a uniform random variable \(X\) is:

As the picture illustrates, \(F(x)=0\) when \(x\) is less than the lower endpoint of the support (\(a\), in this case) and \(F(x)=1\) when \(x\) is greater than the upper endpoint of the support (\(b\), in this case). The slope of the line between \(a\) and \(b\) is, of course, \(\dfrac\).

Lesson

Save changes Close

Except where otherwise noted, content on this site is licensed under a CC BY-NC 4.0 license.